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Abstract

Background—The observational test-negative study design is used to estimate vaccine 

effectiveness against influenza virus infection. An important assumption of the test-negative 

design is that vaccination does not affect the risk of infection with another virus. If such virus 

interference occurred, detection of other respiratory viruses would be more common among 

influenza vaccine recipients and vaccine effectiveness estimates could differ. We evaluated the 

potential for virus interference using data from the Influenza Incidence Surveillance Project.

Methods—From 2010 to 2013, outpatients presenting to clinics in 13 US jurisdictions with acute 

respiratory infections were tested for influenza and other respiratory viruses. We investigated 

whether virus interference might affect vaccine effectiveness estimates by first evaluating the 

sensitivity of estimates using alternative control groups that include or exclude patients with other 

respiratory virus detections by age group and early/middle/late stage of influenza seasons. Second, 

we evaluated the association between influenza vaccination receipt and other respiratory virus 

detection among influenza test negative patients.

Results—Influenza was detected in 3,743/10,650 patients (35%), and overall vaccine 

effectiveness was 47% (95% CI: 42%, 52%). Estimates using each control group were consistent 

overall or when stratified by age groups, and there were no differences among early, middle, or 

late phase during influenza season. We found no associations between detection of other 

respiratory viruses and receipt of influenza vaccination.

Conclusions—In this 3-year test-negative design study in an outpatient setting in the United 

States, we found no evidence of virus interference or impact on influenza vaccine effectiveness 

estimation.
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Introduction

The test-negative study design has been applied for estimating influenza vaccine 

effectiveness in many countries since 2005 and monitoring changes in vaccine effectiveness 

from year to year.4-11 In this variant of the case control study, patients presenting for 

ambulatory care with acute respiratory infection are tested for influenza virus. Cases are 

defined as patients testing positive for influenza virus, while those testing negative form the 

control group. Similar to a traditional case control study, vaccine effectiveness in a test-

negative design is estimated as one minus the odds ratio of vaccination coverage among test-

positive patients versus test-negative patients, adjusted for potential confounding factors, 

such as age, to permit a causal interpretation of the adjusted association as a measure of 

vaccine effectiveness.12-14

Influenza viruses co-circulate with other respiratory viruses during the winters in temperate 

locations. Virus interference describes an ecologic phenomenon that is occasionally 

reported, where an epidemic of one virus appears to ‘interfere’ with the occurrence of 

another epidemic, either by delaying its start, or by advancing its end if it has already 

started.15,16 Studies have reported apparent interference between epidemics of influenza and 

epidemics of other respiratory viruses, most notably rhinoviruses, which are the most 

frequently detected viruses in many studies of patients with acute respiratory infection.16-20 

Some studies have suggested that virus interference may occur in some seasons but not 

others, or may occur after epidemics of some influenza types/subtypes but not others.16,21 

This phenomenon is still controversial and is not consistently observed. The biological 

mechanism causing the ecological phenomenon of virus interference could be temporary 

non-specific immunity following an episode of acute respiratory infection, due to 

stimulation of the innate immune response during and for a short time after infection.22,23 

Consistent with that mechanism, one small randomized trial of influenza vaccination in 

Hong Kong reported a significantly increased risk of other respiratory viruses among 

recipients of influenza vaccination.24

To permit valid estimation of vaccine effectiveness, one assumption of the test-negative 

design is that the probability of infection with another respiratory virus is not affected by 

receipt of influenza vaccination.26,27 Whether virus interference could affect vaccine 

effectiveness estimation in the test-negative design remains unclear, although a simulation 

study showed that only a small bias would be introduced during typical influenza epidemics 

because the cumulative incidence of influenza virus infection is thought to be relatively low 

in a typical epidemic and therefore any consequent interference effect would be limited.27-29 

A study examining the potential for virus interference to affect vaccine effectiveness by 

comparing estimates from test-negative design-type analyses verses cohort-type analyses of 

data from randomized controlled trials of live attenuated influenza vaccines also found little 

difference between estimates generated by the two types of study.30 However, when the 

incidence of influenza infection is relatively high compared to those of other respiratory 

viruses, or when non-specific immunity following infection could last for a longer period, 

vaccine effectiveness estimates obtained from the test-negative design could be biased.28,31
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To examine the potential for virus interference in a test-negative study in the United States, 

we used data from the Influenza Incidence Surveillance Project (IISP), which was 

established by the US Centers for Disease Control and Prevention (CDC).32-35 Data on 

patients' self-reported vaccination history and influenza and other respiratory virus testing 

results were collected for the 2010-11, 2011-12, and 2012-13 influenza seasons. Vaccine 

strains were generally well matched to the prevalent strains each season.36-38 The objectives 

of the present study were to evaluate the potential for virus interference to affect vaccine 

effectiveness estimates during the entire influenza season or different phases in each 

influenza season by (1) determining the sensitivity of vaccine effectiveness estimates to the 

choice of control group and; (2) examining the associations between influenza vaccination 

and detection of other respiratory viruses in patients who tested negative for influenza. If 

virus interference were to occur, people who received influenza vaccination could have a 

lower risk of influenza virus infection and a higher risk of infection with other respiratory 

viruses. Patients who tested positive for other respiratory viruses might be more likely to be 

vaccinated than the general population.24 Thus estimates by different control groups could 

be different, and association between influenza vaccination and detection of other 

respiratory viruses could be away from null.

Methods

Subjects

The IISP comprised 101 clinics covering 13 U.S. jurisdictions (sites) each year including 

Florida, Iowa, Minnesota, North Dakota, Oregon, Wisconsin, New York City, New Jersey, 

Virginia, Los Angeles County, and Philadelphia for all seasons (2010-2013), Utah for 

2010-11, and Texas for 2011-12 and 2012-13. Clinical staff identified patients with acute 

respiratory illnesses within 7 days from onset and collected a specimen for laboratory 

testing. Acute respiratory illness was defined as any two of the following reported 

symptoms: fever, cough, sore throat, rhinorrhea, and congestion. In 2011-12 and 2012-13, 

seven and ten sites, respectively, narrowed case criteria to require fever plus cough or sore 

throat. A nasopharyngeal, nasal aspirate, oropharyngeal or nasal swab was collected from 

the first 10 patients consulted each week. Self-reported vaccination status, demographic 

data, and clinical data were collected by general practitioners at each study site. All 

specimens were tested for influenza and, unless depleted, other respiratory viruses, including 

respiratory syncytial virus (RSV), parainfluenza viruses (PIV) 1-3, metapneumovirus 

(MPV), rhinoviruses and adenovirus by real-time reverse transcriptase polymerase chain 

reaction platforms which have been described previously.32 The IISP uses routinely 

collected specimens and public health surveillance data, and was therefore determined by 

CDC not to be subject to institutional review board approval for human research protections.

Statistical analysis

We restricted analysis to the three influenza seasons covered by the study period. The start 

and end of each season were defined by the first and last week in which at least 10 patients 

tested positive for influenza virus from all participating clinics combined. We defined the 

peak of each influenza season as the week during each season with the highest proportion of 

patients testing positive for influenza, and we defined the 5-week period with 2 weeks on 
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each side of the peak week, as well as the peak week, as the “middle phase” of that season. 

The “early phase” of each season was defined as the weeks from the start of the season prior 

to the “middle phase”, and similarly the “late phase” was the period after the “middle phase” 

until the end of that season.

To make the most of available data, we used multiple imputations for missing data on age, 

sex and vaccination history with 20 imputed datasets within each of the three influenza 

seasons. 39 Variables including age, sex, state, calendar week of visit, vaccination history 

and laboratory results for influenza virus were considered in an additive regression model 

for the multiple imputation. In our previous study there was no difference between vaccine 

effectiveness estimates in complete case analyses versus analyses with multiple imputation 

of missing values.33

We used three approaches to determine whether there was any evidence that virus 

interference affected estimation of vaccine effectiveness in this study. First, we examined the 

potential for virus interference to affect vaccine effectiveness by determining the sensitivity 

of estimates to the choice of control groups. We estimated and compared vaccine 

effectiveness with three different control groups: patients testing negative for influenza virus, 

patients testing negative for influenza virus but positive for at least one other respiratory 

virus, and patients testing pan-negative (those who tested negative for both influenza and 

other respiratory viruses) . The null hypothesis is that there is no difference in vaccine 

effectiveness against influenza infection using these three control groups. If virus 

interference were to occur, patients who tested positive for other respiratory viruses might be 

more likely to be vaccinated, resulting in a higher value of vaccine effectiveness compared 

to estimates using controls testing negative for influenza or controls testing pan-negative26 

We used conditional logistic regression models to estimate vaccine effectiveness, adjusting 

for age group and sex and conditioning by week of clinic visit to account for changes in 

vaccine coverage over calendar time.33,40 Estimates of vaccine effectiveness were also 

stratified by age group, influenza season, and influenza type/subtype.

Second, we examined whether any differences between vaccine effectiveness estimates 

using the three control groups occurred during the middle and late phase compared to the 

early phase within each influenza season. If non-specific immunity were to occur after an 

influenza virus infection and last for a few weeks after infection, the proportion of the 

population experiencing temporary non-specific immunity would be highest around the peak 

of an influenza season or shortly afterwards.23 Therefore, an increase in the risk of other 

respiratory virus infections among vaccinated persons, and thus higher vaccine effectiveness 

estimates when using controls testing positive for another respiratory virus compared to 

estimates when using controls testing negative for influenza or testing pan-negative, would 

more likely to be observed during or after the influenza peak rather than the start of an 

influenza epidemic.24

Third, we examined the association between influenza vaccination and detection of other 

respiratory viruses during different phases of each influenza season among patients that 

tested negative for influenza virus. The null hypothesis of no association between 

vaccination and detection of other respiratory viruses would correspond to an odds ratio of 
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1. Based on the purported mechanism of temporary non-specific immunity, if influenza 

vaccination were to increase the risk of infection with other respiratory virus during or after 

the peak of the influenza season, the odds ratio could be greater than 1, particularly during 

middle or late phases of the influenza season. We first compared vaccination coverage 

between pan-negative controls versus controls that tested positive for other respiratory 

viruses, and then used conditional logistic regression where the outcome variable was 

detection of another respiratory virus and the exposure of interest was vaccination history, 

conditioning by week of visit, and adjusting for age group and sex. Because the risk of 

respiratory virus infections tends to be highest in children, we repeated these analyses by age 

group with the hypothesis that any differences due to virus interference might be greatest or 

most obvious in children. We repeated these analyses to examine the associations between 

receipt of influenza vaccination and detection of each specific other respiratory viruses. In 

addition, we conducted sensitivity analysis, restricting analyses to subjects who presented 

with influenza-like illness (defined as fever plus cough or sore throat).

Assuming that the ratio of patients testing positive for other respiratory viruses compared to 

pan-negative is 1:1, in order to have 80% power at a 5% significance level to detect an odds 

ratio for vaccination among those positive for other respiratory viruses compared with pan-

negative controls of 1.2, we estimated that a sample size of 1900-2800 patients would be 

needed for vaccination coverage ranging from 30%-50%. We therefore ensured that our 

sample size would be large enough to include at least 1800-2200 patients in most age strata, 

for stratified analyses. All analyses were conducted using R version 3.1.1 (R Foundation for 

Statistical Computing, Vienna, Austria).

Results

From August 2, 2010 to December 31, 2013, 17652 patient specimens were collected. We 

excluded patients who were not tested for influenza virus (n=572), who were less than 6 

months of age (n=397), or presented outside of influenza seasons (n=6033). At least 10 test-

positive patients per week were identified for 20, 17, and 23 consecutive weeks in the 

2010-11, 2011-12, and 2012-13 seasons respectively, and the weekly proportions of patients 

testing positive for influenza peaked in late February 2011, in mid-March 2012, and in early 

January 2013, respectively (Figure 1). The influenza season in 2010-11 was a mixed season 

with co-circulation of three influenza types/subtypes, while the season in 2011-12 and 

2012-13 was dominated by A(H3N2). A total of 4208, 2164, and 4278 patients were 

included in each of these three influenza seasons respectively, and a total of 10650/17652 

(60%) patients were included in the main analyses. Among 10650 patients tested for 

influenza, 10614 (99.7%) patients were further tested for rhinoviruses, RSV, PIV 1-3, MPV 

and adenovirus.

In both influenza-positive cases and the pan-negative control group (those who tested 

negative for both influenza and other respiratory viruses), the majority of patients were 

school-age children 6 to 17 years of age and adults 18 to 49 years of age (Table 1). In the 

other respiratory virus positive control group 1330/2835 (47%) patients were young children 

aged 6 months to 5 years, while in the pan-negative control group there were only 703/4036 

(17%) young children aged 6 months to 5 years. Slightly more than half of the patients were 
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female among influenza-positive cases, other virus positive controls and pan-negative 

controls while a larger proportion of females was observed in the pan-negative control group 

(58%). Influenza positive patients less frequently reported receipt of influenza vaccination 

compared to other control groups, and approximately 20% of all groups were missing 

vaccination status (Table 1). The most commonly detected other respiratory virus was 

rhinovirus (n=1101), followed by RSV (n=783) (eTable 1). Children aged 6 months to 5 

years comprised a large proportion of the cases infected with rhinovirus (n=442) and RSV 

(n=496) (eTable 1).

We compared influenza vaccination coverage between influenza negative controls, other 

respiratory virus positive controls and pan-negative controls, stratified by influenza season 

and age group after multiple imputation (Table 2). There was no difference in vaccine 

coverage within each age group and influenza season in complete data analysis verses 

multiple imputation (results not shown). Vaccination coverage was higher among younger 

children aged 6 months to 5 years and adults aged >50 years, and lowest among young 

adults aged 18 to 49 years across three influenza seasons. We found no differences in 

vaccination coverage for each age group by influenza season except among children aged 6 

months to 5 years among which vaccination coverage was higher in pan-negative controls 

(48%) during the 2010-11 season and in other virus positive controls (58%) during 2011-12. 

We also examined influenza vaccination coverage by other respiratory virus tested and found 

no association between influenza vaccination and detection of RSV, rhinoviruses, PIV 1-3, 

MPV, and adenovirus for each age group compared with pan-negative controls (eTable 1).

For our first analysis, we estimated vaccine effectiveness using conditional logistic 

regression matching by calendar week. The overall vaccine effectiveness for those testing 

influenza negative was 47% (95% confidence interval, CI: 42%, 52%) (Table 3). Consistent 

between each of the control groups, vaccine effectiveness tended to decrease with age. Using 

each of the three control groups, vaccine effectiveness estimates against influenza A(H3N2) 

across three seasons fell in the range 50%-60% for children aged 6 months to 5 years while 

point estimates were generally lower for the other three age groups (Figure 2). The vaccine 

effectiveness estimates by influenza type/subtype indicated a higher effectiveness against 

influenza A(H1N1) compared to A(H3N2) and B. Although estimation for adults older than 

50 years was not possible, vaccine effectiveness estimates against influenza (H1N1) were all 

larger than 45% for other age groups. Estimates of vaccine effectiveness using controls 

testing positive for another respiratory virus were slightly higher than estimates using 

controls that were influenza negative or pan-negative, but estimates by all control groups had 

widely overlapping confidence intervals, and differences between estimates were mostly less 

than 10 percentage points when stratified by season or influenza virus type/subtype (Figure 

2). The estimates by three control groups were consistent and no differences by control 

group were found when stratified by age groups, influenza season, and/or type/subtype 

(Figure 2, eFigure 1, Table 3).

In our second analysis, we further examined the association of influenza vaccine 

effectiveness by age group and with detection of other respiratory viruses in the early, 

middle and late phases of each season as defined above. We found no major differences 

between the three vaccine effectiveness estimates in each phase of each influenza season 
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(eFigure 2). In our third analysis, we found no clear evidence of an association between 

other respiratory virus detection and receipt of influenza vaccination (Figure 3). Likewise, 

we found no association between influenza vaccination and other respiratory virus detection 

when further stratified by age group (Figure 4) or individual respiratory virus detection 

(eFigure 3). When analyses were restricted to patients meeting the influenza-like illness case 

definition only, 6792 patients in three influenza seasons were included in statistical analysis, 

and the findings were very similar and with wider confidence intervals on point estimates 

(data not shown).

Discussion

Based on 10650 patients 6 months to 99 years of age, we found no difference in estimates of 

vaccine effectiveness against any influenza virus when using influenza test negative controls, 

other respiratory virus positive controls, or pan-negative controls (those who tested negative 

for both influenza and other respiratory viruses) over a period of three seasons in the United 

States. Previously, a randomized controlled trial for children aged 6 to 17 years in Hong 

Kong reported that vaccine effectiveness estimates may differ depending on choice of 

control groups, and thus needed further research.24 Using surveillance data from the United 

States in the present study, we addressed the impact of control groups and observed no 

substantial differences across the three control groups in overall vaccine effectiveness 

estimates and estimates stratified by age, type/subtype, or season (Table 3, Figure 2), which 

is consistent with previous theoretical considerations of the study design.26,31 Although 

comparatively larger differences were observed between vaccine effectiveness estimates 

based on the three control groups during the 2011-12 season (Figure 2, eFigure 1, eFigure 

2), this could be explained by the smaller influenza peak and thus smaller sample size during 

that season (Figure 1, Table 3). Moreover, no difference in effectiveness estimates based on 

the three control groups were found in this season overall or when stratified by age group, 

influenza type/subtype, and early/middle/late phase.

The results of the present study are consistent with other studies that compared alternative 

control groups when estimating influenza vaccine effectiveness in different countries and 

settings.7,29,41-44 Four studies examined virus interference from pooled estimates over more 

than one influenza season: one of these studies recruited children in hospitals in Australia,42 

one recruited children from hospitals in Hong Kong,7 one recruited hospitalized pneumonia 

patients of all ages in the United States43 and one included children and older adults seeking 

ambulatory care or admitted to hospitals in the US.41 Consistently, no effect of virus 

interference was detected according to pooled estimates across several influenza seasons in 

these studies. Moreover, two other studies from Australia and New Zealand examined 

vaccine effectiveness estimates for a single influenza season by alternative control groups, 

and very similar estimates were derived using influenza negative controls and other 

respiratory viruses positive controls.29,44 Three other studies that recruited relatively smaller 

numbers of patients in single influenza seasons found larger differences in vaccine 

effectiveness point estimates by alternative control groups with overlapping confidence 

intervals.21,31,45 Although virus interference was given as a possible explanation for 

differences in vaccine effectiveness estimates by control group, those studies may have been 

underpowered to identify real effects. Previous studies have suggested that choosing a 
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control group testing positive for another respiratory virus might be preferred to one based 

only on testing negative for influenza because detection of other viruses confirms adequate 

swab quality, especially for older children or adults, who can have lower levels of virus 

shedding compared to young children.42,45 In our study, we did find that other respiratory 

viruses were more likely to be detected among young children compared to other age 

groups, but there were no major differences between vaccine effectiveness estimates using 

the control group testing positive for other respiratory viruses and the control group testing 

negative for influenza- (Table 3, Figure 2).

We found consistent detection of other respiratory viruses among vaccinated and 

unvaccinated patients during three phases of each influenza season (Figure 3), providing 

further evidence that virus interference did not have any substantial effect on vaccine 

effectiveness estimates in this study. Based on the hypothesis that unvaccinated persons 

might have a higher risk of influenza virus infection, but then a higher proportion of 

unvaccinated persons would have temporary protection around and after the peak in 

influenza activity due to short-term stimulation of innate non-specific immunity22,46 or 

reduced exposure during convalescence,25 we examined the association between influenza 

vaccination and detection of other respiratory virus during the early, middle, and late phases 

of each influenza epidemic among influenza-negative patients. However, no differential 

association was found among any age group in each season (Figure 4). This evidence, across 

three seasons, indicates that virus interference did not appear to have any substantial effect 

on estimates of vaccine effectiveness using the test-negative design.

While vaccine effectiveness estimates varied by age group, vaccination coverage was quite 

similar among control groups, with the exception of children aged 6 months to 5 years in the 

2010-11 and 2011-12 influenza seasons. We found no association between influenza 

vaccination and detection of any other respiratory virus by age group, and consistently, our 

finding suggested no age-group specific association between influenza vaccination and 

detection with each of the other respiratory viruses tested including RSV, rhinoviruses, PIV 

1-3, MPV and adenovirus (eTable 1). Furthermore, there was no association between 

influenza vaccination and detection of other respiratory viruses after adjusting for age group 

and sex and conditioning on calendar week (eFigure 3). We found that the risk of other 

respiratory virus detection was not associated with influenza vaccination for each age group 

or overall, with point estimates around unity and confidence intervals all across unity (Figure 

4). Similarly, the 2013 study by Sundaram et al. examined the association between influenza 

vaccination and detection of RSV, adenovirus, MPV, PIV 1-4, rhinoviruses, or coronaviruses 

among children aged 6 months to 5 years and adults elder than 50 years using univariate 

analysis.41 No association was identified except for PIV 1-4, and the association was 

reversed between children and adults. Furthermore, a hospital-based study conducted in 

Spain also examined vaccine effectiveness against RSV-related hospitalization and reported 

no association between receipt of influenza vaccination and detection of RSV.47

A strength of this study is that the IISP platform incorporates routine molecular testing for 

influenza and other respiratory viruses, allowing comparison of vaccine effectiveness based 

on different control groups and estimation of potential of virus interference. A second 

advantage of this study is the large sample size, which permitted precise estimation of 
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season-specific vaccine effectiveness and vaccine effectiveness by early/middle and late 

phases of each influenza season in most age groups, which has not been reported in previous 

studies. We were also able to examine the impact of choices of alternative test-negative 

groups on a seasonal basis for most age groups (eFigure 1. eFigure 2), and thus provide 

robust evidence on the potential for virus interference to affect VE estimates. Nevertheless, 

the difference in point estimates was 7 percentage points between the vaccine effectiveness 

estimate using the control group testing positive for other respiratory viruses and the 

estimate using the pan-negative control group (Table 3). While the confidence interval was 

across 0, and despite our large sample size, we could not rule out small effects of virus 

interference on vaccine effectiveness. Our study is limited by self-reported data on 

vaccination status, which precludes evaluation by type of vaccine received and might 

introduce recall bias. If the bias was non-differential, vaccine effectiveness could be 

underestimated across three alternative control groups. In addition, we could not adjust for 

underlying medical conditions, which is a potential confounding factor. Another limitation is 

that around 20% of patients had missing vaccination records. We conducted multiple 

imputations by generalized additive model to minimize potential bias and make the most of 

all available data. The IISP is a large surveillance program; however, within year, age group 

and specific influenza virus types, we were insufficiently powered to calculate vaccine 

effectiveness for some subgroups of patients. Finally, patients testing pan-negative may have 

had false negative results due to low levels of virus shedding or imperfect swab collection, 

and that would lead to misclassification of outcome status and reduce the power of our study 

to identify differences between the various control groups.

In conclusion, we did not find any evidence that virus interference affected vaccine 

effectiveness estimation in a test-negative study using all influenza negative, other virus 

positive, and all virus negative control groups over three consecutive seasons in the United 

States. The dynamic interactions of respiratory viruses and their circulation among humans 

are not well understood, and virus interference remains a controversial phenomenon. 

Simulation studies have indicated that unless there is very high incidence of influenza virus 

infections in the community, and prolonged non-specific immunity following one infection, 

interference is unlikely to cause any major bias in vaccine effectiveness estimates from the 

test-negative design.28 Our empirical findings also support the use of the test-negative 

control study design for the assessment of vaccine effectiveness in protecting individuals of 

all ages against influenza virus infection.
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Figure 1. 
(A) Detection of influenza viruses among patients presenting for outpatient consultation 

with acute respiratory infections through three influenza seasons in the Influenza Incidence 

Surveillance Project. (B) Patterns in detection of other respiratory viruses through the same 

period.
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Figure 2. 
(A) Estimates of influenza vaccine effectiveness by age group and season using three 

different control groups. (B) Estimates of influenza vaccine effectiveness by age group and 

influenza type/subtype using three different control groups. VEANY- : control group includes 

all patients that tested negative for influenza virus; VEORV+: control group includes patients 

that tested negative for influenza virus and positive for another respiratory virus; VEPAN- : 

control group includes patients that tested negative for influenza virus and other respiratory 

viruses. Estimates with confidence intervals wider than 250 percentage points are not shown.
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Figure 3. 
Estimates of the association between influenza vaccination and detection of other respiratory 

viruses, quantified by the odds of vaccination in patients testing positive for a respiratory 

virus divided by the odds of vaccination in patients testing negative for a respiratory virus, in 

the subset of patients testing negative for influenza virus. Analyses were done overall, and 

stratified by the early, middle, and late phases of each influenza season, with adjustment for 

age group and sex and matched by calendar week.
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Figure 4. 
Estimates of the association between influenza vaccination and detection of other respiratory 

viruses, quantified by the odds of vaccination in patients testing positive for a respiratory 

virus divided by the odds of vaccination in patients testing negative for a respiratory virus, in 

the subset of patients testing negative for influenza virus. Analyses were done overall, and 

stratified by four age groups, in the early, middle, and late phases of each influenza season, 

and overall, with adjustment for age group and sex and matched by calendar week.
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Table 1

Comparison of the characteristics of patients testing positive for any influenza virus, patients testing positive 

for other respiratory virus, and patients testing negative for all viruses.

Characteristic Influenza-positive 
(n=3743) N (%)

Other respiratory virus 
positive (n=2835) N (%)

Pan-negative a (n=4036) N 
(%)

Age group

 6 months- 5 years 685 (18.3%) 1330 (46.9%) 703 (17.4%)

 6-17 years 1345 (35.9%) 638 (22.5%) 1132 (28.0%)

 18-49 years 1372 (36.7%) 663 (23.4%) 1745 (43.2%)

 ≥50 years 338 (9.0%) 203 (7.2%) 454 (11.2%)

 Unknown 3 (0.1%) 1 (0%) 2 (0%)

Sex

 Male 1797 (48.0%) 1369 (48.3%) 1669 (41.4%)

 Female 1914 (51.1%) 1445 (51.0%) 2329 (57.7%)

 Unknown 32 (0.9%) 21 (0.7%) 38 (0.9%)

Influenza vaccination history >2 weeks prior 
to illness onset

 Yes 696 (18.6%) 934 (32.9%) 1155 (28.6%)

 No 2204 (58.9%) 1322 (46.6%) 2026 (50.2%)

 Reported as unknown 843 (22.5%) 579 (20.4%) 855 (21.2%)

Influenza season

 2010-11 1424 (38.0%) 1176 (41.5%) 1591 (39.4%)

 2011-12 472 (12.6%) 701 (24.7%) 984 (24.4%)

 2012-13 1847 (49.3%) 958 (33.8%) 1461 (36.2%)

a
Pan-negative patients tested negative for influenza virus, respiratory syncytial virus (RSV), parainfluenza viruses (PIV) 1-3, metapneumovirus 

(MPV), rhinovirus and adenovirus.
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Table 2

Comparison of the influenza vaccination coverage among patients testing negative for any influenza virus, 

patients testing positive for other respiratory virus and patients testing negative for all viruses after multiple 

imputation, by season and age group. a

Influenza season and age group All influenza negative Other respiratory virus positive Pan-negative b

2010-11 Season 957/2784 (34%) 422/1176 (36%) 528/1591 (33%)

 6 months- 5 years 400/911 (44%) 247/596 (41%) 151/313 (48%)

 6-17 years 254/735 (35%) 91/261 (35%) 161/471 (34%)

 18-49 years 233/972 (24%) 62/270 (23%) 168/692 (24%)

 ≥50 years 71/165 (43%) 22/49 (45%) 48/115 (42%)

2011-12 Season 721/1692 (43%) 343/701 (49%) 375/984 (38%)

 6 months- 5 years 252/463 (54%) 174/302 (58%) 78/160 (49%)

 6-17 years 211/494 (43%) 90/193 (47%) 120/300 (40%)

 18-49 years 160/555 (29%) 46/144 (32%) 112/406 (28%)

 ≥50 years 99/180 (55%) 34/62 (55%) 65/118 (55%)

2012-13 Season 907/2431 (37%) 379/958 (40%) 526/1461 (36%)

 6 months- 5 years 312/666 (47%) 203/432 (47%) 108/230 (47%)

 6-17 years 181/551 (33%) 58/184 (32%) 122/362 (34%)

 18-49 years 246/901 (27%) 70/250 (28%) 176/648 (27%)

 ≥50 years 169/313 (54%) 49/92 (53%) 120/221 (54%)

a
Missing data on age (n=7), sex (n=91) and vaccination history (n=2286) were imputed 20 times. A total of 10,650 subjects were included.

b
Pan-negative patients tested negative for influenza virus, respiratory syncytial virus (RSV), parainfluenza viruses (PIV) 1-3, metapneumovirus 

(MPV), rhinovirus and adenovirus.
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Table 3

Estimates of influenza vaccine effectiveness overall, and by age group and influenza type/subtype, 2010-13. a

Vaccine effectiveness (95% confidence interval) b

Test-positive versus all test-
negative cases (n=10650)

Test-positive versus other 
respiratory virus positive cases 

(n=6578)

Test-positive versus pan-
negative cases (n=7779)

Overall 47% (42%, 52%) 51% (44%, 57%) 44% (38%, 50%)

Age group

6 months- 5 years 58% (48%, 66%) 57% (46%, 66%) 61% (49%, 70%)

6-17 years 45% (33%, 54%) 45% (29%, 57%) 45% (32%, 55%)

18-49 years 36% (22%, 48%) 42% (24%, 55%) 35% (20%, 47%)

≥50 years 35% (11%, 52%) 35% (0%, 58%) 35% (9%, 53%)

Influenza season

2010-2011 40% (29%, 49%) 39% (24%, 50%) 41% (29%, 52%)

2011-2012 50% (36%, 61%) 59% (46%, 69%) 43% (26%, 57%)

2012-2013 51% (43%, 58%) 57% (48%, 64%) 47% (37%, 55%)

Influenza virus type/subtype

H1N1 63% (51%, 72%) 65% (53%, 74%) 63% (50%, 73%)

H3N2 39% (31%, 47%) 44% (34%, 52%) 35% (26%, 44%)

B 50% (42%, 58%) 52% (43%, 60%) 50% (40%, 57%)

a
Missing data on age (n=7), sex (n=91) and vaccination history (n=2286) were imputed (n=10650) 20 times. 73/10650 (0.7%) patients with 

unsubtypeable influenza A virus infections were excluded from the estimation of VE for A(H1N1) and A(H3N2) but included in the overall 
estimates.

b
We adjusted in each regression model for age and sex, and conditioned by calendar week.
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